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Classical Shannon Entropy

Def: H(p) = −
∑

k pk log pk Shannon (1948)

Properties of multi-party systems:

Pos H(p) ≥ 0

SSA H(A) + H(B)− H(A ∩ B)− H(A ∪ B) ≥ 0

Mono A ⊂ B ⇒ H(A) ≤ H(B)

H(A) ≡ H(pA) etc.

A,B, . . . subsets of some index set X ' [1, 2, , . . .N]
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Quantum Entropy

Def: (1927) von Neuman Entropy of quantum state ρ

density matrix ρ ≥ 0, Tr ρ = 1

S(ρ) = −Tr ρ log ρ = −
∑
k

λk log λk

Props: 1) S(ρ) ≥ 0 2) S(ρ) concave

3) SSA for multi-party systems H = HA ⊗HB ⊗HC

S(ρABC ) + S(ρB) ≤ S(ρAC ) + S(ρBC )

Quant marginals or reduced density matrix ρA = TrB ρAB

That’s all folks!
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Conditional information

Cond Info S(ρAB)− S(ρA) concave in ρAB

Cond Info always ≥ 0 for classical systems

Can have quant um state |ψAB〉 = 1√
2

(
|00〉+ |11〉

)
∈ HA ⊗HB

ρA = TrB ρAB = TrB |ψAB〉〈ψAB | = 1
2 IA max mixed

Cond Info = 0− log 2 < 0 ρAB = |ψAB〉〈ψAB | pure

Cond Info neg for highly entangled quantum states

once thought “defect”; now has nice info theory interp.

conditional info is amount of info need to learn AB knowing A

when neg, measures entanglement available for future info trans

M. Horodecki, Oppenheim and Winter (2005 ) state merging
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Weak Monotonicity

ρAD = |ψAD〉〈ψAD | pure ⇒ S(ρA) = S(ρD)

pure state is rank one projection op, ρ2AD = ρAD ≥ 0

Purification: Given ρABC can find vector |ψABCD〉 s.t

ρABC = TrD |ψABCD〉〈ψABCD |

Apply to SSA S(ρAB) + S(ρBC )− S(ρABC )− S(ρB) ≥ 0

Equiv. ineq: S(ρCD) + S(ρBC )− S(ρD)− S(ρB) ≥ 0

Weak monotonicity or “monogamy of entanglement”

Cond Info S(ρBC )−S(ρB) and S(ρCD)−S(ρD) can’t both be neg

Charlie can be entangled with Beverly or Dorothy, but not both
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Purification and Complementarity

Spectral decomp of ρA =
∑

k λk |φk〉〈φk |

Let {θk} any O.N. basis for HB ' HA

Def |ψAB〉 =
∑

k

√
λk |φk〉 ⊗ |θk〉 “purification”

ρB = TrA |ψAB〉〈ψAB | =
∑

k λk |θk〉〈θk | same spectrum as ρA

vector |ψ〉 ∈ H and rank one proj |ψ〉〈ψ| both called “pure” state

identify class prob vector pk with diag D.M. ρ =
∑

k pk |ek〉〈ek |

can also “purify” class prob dist |ψAB〉 =
∑

k pk |ek ⊗ fk〉 quant state

Start with arbitrary ψAB =
∑

jk ajk |ej ⊗ fk〉

Use Sing Val Decomp (aka “Schmidt”) ψAB =
∑

k µk |φk〉 ⊗ |θk〉

non-zero evals of both ρA and ρB are µ2k ⇒ S(ρA) = S(ρB)

Essentially AA∗ and A∗A same non-zero e-vals
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Properties of quantum entropy

Some sense: Only one inequality, SSA

S(ρ) ≥ 0 is really just normalization condition

most purposes only need consistency, TrAB ρAB = Tr A ρA

But we need it to so that entropy vectors form cone

Have seen Weak Monotonicity is equiv, to SSA in quantum setting

Even concavity not indep: clever choice of block matrix

sub add S(ρAB) ≤ S(ρB) + S(ρB) ⇒ concavity

similarly SSA ⇒ Cond Info concave in ρAB

But these are not linear implications, so will need to add something
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N-party Entropy Cones

ρ12...N N-party state

consider all reduced states ρ1, ρ2, . . . , ρ12, . . . ρ37 . . . ρ234 . . .

fix order and generate vector in R2N from entropies(
S(ρ1),S(ρ2), . . .S(ρ12), . . .S(ρ37), . . .S(ρ234), . . . ,

)
closure of all such vectors is a convex cone – entropy cone

classical entropy cone ( quantum entropy cone

would like to characterize these cones, esp. quantum cones

Cone in R2N generated by half-planes from various inequalities

Shannon cone: Pos, SSA, Mono

YZ: Shannon Ent Cone ) Classical Ent Cone for N > 3
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cones of entropy type vectors

A,B, . . . subsets of some index set X ' [1, 2, , . . .N]

J = {A,C ,D, . . .} set of substes JC = {B ∈ X : B /∈ J}

Σ
C
N and Σ

Q
N closure of cone of N-party entropy vectors

ΓC
N polymatroid H(p) ≥ 0, H(AB) > H(A), SSA

ΓQ
N polyquantoid S(ρ) ≥ 0, weak mono, SSA

or S(ρ) ≥ 0, SSA , and

quant marginals of (N + 1)-party states S(ρJ) = S(ρJC )

ΛC
N and ΛQ

N add linear rank ineq to ΓC
N and ΓQ

N

Can completely characterize ΛQ
4 ≡ ΓQ

4 and Ingelton Ineq.

Don’t know if Σ
Q
4 satisfies non-Shannon inequalities
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Defs

mutual information

I (A : B) ≡ S(A) + S(B)− S(AB)

conditional mutual information

I (A : B|C ) ≡ S(AC ) + S(BC )− S(C )− S(ABC )

Ingleton expression
ING(AB : CD) ≡ I (A : B|C )+I (A : B|D)+I (C : D)−I (A : B)

SSA equiv to I (A : B|C ) ≥ 0

Ingleton inequality ING(AB : CD) ≥ 0

not universal – simplest “linear rank inequality”

Examples of “balanced” inequality – number of A,B, . . . cancel out
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Group rank inequalities

Thm: (Chan-Yeung) There is a 1-1 correspondence between

entropy inequalities for classical N-party systems and

inequalities for the sizes of subgroups of groups.

Ex: SSA equiv to |G1| · |G2| ≤ |G1 ∩ G2| · |G |

Pf Idea: Can find class prob dist with entropy of marginals log |G ||GJ |

Subgroups with special properties, e.g., normal or abelian,

may satisfy additional inequalities

linear rank inequalities – sizes of subspaces of vector spaces

GA and GB normal ⇒ ING(AB : CD) ≥ 0.

Ingleton is only linear rank inequality for 4-party systems
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non-Shannon inequalities

Classical N-party entropy cone satisfies non-Shannon ineq.

• Yeung-Zhang (1997-98) gave first t = 1

• Dougherty-Freiling, Zeger (2006+)

found new inequalities by computer search

• Matúš (2007) found two infinite families t ≥ 0 integer

t ING(AB : CD)+I (A : B|D)+ t(t+1)
2

[
I (B : D|C )+I (C : D|B)

]
≥ 0

ING(AB : CD)+ positive terms ≥ 0

⇒ 4-party entropy cone not polyhedral

suggests don’t yet know all classical 4-party inequalities

Know: Classical entropy cone described by Mono and balanced ineq
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Ingleton in Quantum Setting

Any of following conditions implies Ingelton inequality

a) ρABCD = |ψABCD〉〈ψABCD | is any pure 4-party state.

b) ρABCD = ρABC ⊗ ρD or ρA ⊗ ρBCD
c) ρABCD symmetric under partial exchange between

(A,B) and (C ,D), under any one (but not two) of the

exchanges A↔ C , B ↔ D, A↔ D or B ↔ C .

Ingleton Inequality not universal, but hard to find violations
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N-party linear rank inequalities

Kinser (2011) found first infinite family

DFZ (2010) found tree algorithm for generating all families

when pair of subsystems with “common information”

have form
∑

+ ck(cond mutual info) ≥ I (A : B)

In group set up, pair of normal subgroups ' “common info”

Will show ⇒ all stabilizer states satisfy such ineq.

BUT Chan, Grant, Kern (2011) showed ∃ linear rank ineq.

that are not multi-party Ingleton

suggests DFZ does not give all linear rank ineq.

don’t know if stabilizer states would satisfy such ineq.

14 M. B. Ruskai Entropy of Stabilizer States



Common information

State ρAB of two subsystems A,B has common information if

Can add another party ζ such that

H(Aζ) = H(A), H(Bζ) = H(B) and H(ζ) = I (A : B)

corresponds to pair of normal subgroups in groups setting

BUT Chan, Grant, Kern (2010) showed ∃ other linear rank ineq
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Main Result

Thm: Ingleton cone (Pos, SSA, WM, ING) for 4-party systems

is precisely the closure of the convex hull of entropy vectors that

arise from reduced states of 5-party pure stabilizer states.

Thm: Reduced states of (N + 1)-party stabilizer state satisfy every

N-party linear rank inequality from common information (DFZ).

Thm: (Indep by Gross and Walter) Every balanced classical
entropy inequality satisfied by reduced states of stabilizer states.
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Weyl-Heisenberg group

Generalized shift and phase operators on Cd

X |ek〉 = |ek+1〉 Z |ek〉 = ω|ek〉 ω = e2πi/d

XZ = ωZX W group gen by X jZ k

Center C = {ωk
1}k=0,1,...d−1 multiples of identity

Ŵ = W /C Abelian – rough prod X jZ k ignore phase

Consider unitary group on
⊗

x∈X Hx of form W =
⊗

x∈X Wx

Stabilizer G Abelian subgroup of W

simultaneous eigenspace is Quantum Error Correction Code

Stabilizer state is simul eigenstate of max Abel subgroup G
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Stabilizer states

Wj subgroup of U(Hj) with center Cj mult of I (e.g. Weyl-Heis)

Ŵj = Wj/Cj Abelian with size d2
j dj = dimHj .

Consider G max Abelian subgroup of W =
⊗

j Wj

Simultaneous e-vec of all g ∈ G called a stabilizer state

Why are one-dim codes interesting? aka graph states,

Important role in one-way quantum computing cluster state

Arise in mutually unbiased bases

GJ = {g = gj gk : gk = I , k ∈ Jc} think of g = gj ⊗ I
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Key Thm.

Thm: (indep several group ≈ 2004) ρ = |ψ〉〈ψ| pure stab state

ρJ = TrJc |ψ〉〈ψ| proj of rank |ĜJ |
dJ

⇒ S(ρJ) = log
dJ

|ĜJ |

Cor: Since |Ĝ | = d = dJdJc last eq. can be rewritten as

S(ρJ) = S(ρJc ) = log
|Ĝ |
|ĜJc |

− log dJ

log |Ĝ |
|ĜJc |

is a group entropy and

Additional terms cancel for any balanced inequality

Moreover stab group Ĝ Abelian ⇒ Ingleton holds

⇒ Matúš ineq. = Ingleton + pos terms hold
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Classical Balanced Inequalities

More parties – common info assoc with normal subgroups

⇒ all DFZ type linear rnak inequalities hold

More ⇒ all balanced classical entropy ineq hold.

D. Gross and M. Walter (arxiv:1302.6902)

independently by different methods

Use phase space methods to find classical prob dist X

s.t. stabilizer states satisfy S(ρJ) = H(XJ)− |J|

⇒ all balanced classical ineq. hold
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Sketch Proof: part I

P = |ψ〉〈ψ| proj on simul e-state of G max Abel subgroup

gP = χ(g)|ψ〉〈ψ| = χ(g)P χ(g) character of 1-dim rep.

P = |ψ〉〈ψ| =
1

|G |
∑
g∈G

χ(g) g =
1

|G0|
∑
g∈G0

g

G0 ' G/C identify subgp G0 ⊂ G with quotient group

P2 =
1

|G0|2
∑
g

∑
h

gh =
1

|G0|
∑
g

g = P

Aside: trivial rep not essential Pj = |ψj〉〈ψj | ≡ 1
|G0|
∑

g χj(g) g

TrPjPk − |〈ψj , ψk〉|2 = δjk O.N. basis of e-states
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Sketch Proof: part II:

Suffices to consider bipartite setting

ρAB = |ψAB〉〈ψAB | =
1

|Ĝ |

∑
ga⊗gB∈G

gAgB

Tr gB = 0 unless gB = 1

ρA =
1

dAdB

∑
gA⊗1B

gA dB =
|ĜA|
dA

(
1

|ĜA|

∑
gA∈ĜA

gA

)

⇒ ρA proj of rank |ĜA|
dA
⇒ S(ρA) = log

dA

|ĜA|

subtle point |Ĝ | = d = dAdB but |ĜA| 6= dA
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4-party “Ingleton” cone – other direction

Can explicitly compute extreme rays of 4-party Ingleton cone

Show each ray can be realized using a 5-party pure stabilizer state

All but one in (2006) thesis of Ben Ibinson

DFZ methods give all 5-party linear rank inequalities

Conjecture also achieved with 6-party pure stabilizer states

Conj: All DFZ inequalities achieved with pure stabilizer states
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How to violate Ingleton

0 0 1 0 0 0
0 1 0 0 0 1
1 0 0 0 1 0
1 1 0 1 1 1

1
4 |1000〉〈1000|+ 1

4 |0111〉〈0111|+ 1
4 |0010〉〈0010|+ 1

4 |0001〉〈0001|

ING(AB : CD) = 0 + 0 + 0− I (A : B) ≤ 0

“quantumize” |ψ〉 = 1√
2

(
|1000〉+ |0111〉

)
ρABCD = 1

2 |ψ〉〈ψ|+
1
4 |0010〉〈0010|+ 1

4 |0001〉〈0001|

same reduced states as classical

Challenge: Find truly quantum state that violates Ingleton
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Open questions

• All entropy vectors which violate Ingleton in classical cone??

• Do new classical entropy ineq extend to quantum systems?

• What inequalities characterize quantum entropy cone?

• Do stabilizer states satisfy linear rank inequalities that do not
arise from common info ?

• Find an explicit example of such an inequality.

• Do all classical inequalities have form

linear rank ineq + pos terms ≥ 0?

• How much of a restriction are new inequalities, i.e.,

relative size of true entropy cone and Shannon or vonNeuman cone
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